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Abstract—Sustainable continuous cover forestry is defined 

and analyzed in several ways. The differential equation 

representing growth of the basal areas of individual trees, 

motivated by fundamental biological production theory by 

Lohmander, is analyzed and extended in different directions. 

From the solution of the differential equation, the basal areas 

and the tree diameters are obtained as explicit functions of time. 

The diameter is a strictly increasing function of time. In the 

absence of competitors, the diameter increment is shown to be a 

strictly decreasing function of time. Hence, the diameter 

increment can also be interpreted as a strictly decreasing 

function of the diameter. Alternative forms of adjustment of the 

differential equation, with consideration of competition, are 

defined. If the competition is strong, with large trees in the 

vicinity of a particular tree, then the basal area increment, and 

the diameter increment, are reduced. The growth of a large tree 

is less sensitive than the growth of a small tree, to competition 

from other trees. Under strong competition, the basal area 

increment, and the diameter increment, are strictly concave 

functions of the size of the tree. The unique maximum of the 

diameter increment occurs at a higher diameter, if the 

competition increases. In dynamic equilibrium, the tree size 

frequency distribution is stationary. If natural tree mortality 

can be avoided via the harvest strategy, the tree size frequency 

distribution is a function of the size and competition dependent 

growth function, and the harvest strategy. Empirical tree size 

frequency data are used to simultaneously estimate parameters 

of a size and competition dependent growth function and the 

applied harvest strategy, via nonlinear optimization. The 

properties of the estimated growth function are consistent with 

the corresponding properties of the production theoretically 

motivated hypothetical function, and the properties of the 

estimated harvest strategy confirm the corresponding 

hypotheses. The R2 of the nonlinear regression exceeds 0.97. 

With access to an empirically estimated equilibrium tree size 

distribution, it is possible to: 1. Estimate size frequency relevant 

parameters of tree size and competition dependent growth 

functions for individual trees. 2. Estimate the applied harvest 

strategy. 3. Explain and reproduce the empirically estimated 

tree size equilibrium distribution. 

Keywords—continuous cover forestry, sustainability, 

optimization, growth parameter estimation 

I. INTRODUCTION

Sustainable forests and forestry are central components of 

a sustainable world. They contribute to continuous flows of 

forest products such as building materials and fuels, and 

valuable environmental conditions, necessary for large 

amounts of species, all over planet Earth. Simultaneously, 

growing forests absorb CO2 from the atmosphere, as an input 

in the photosynthesis growth process, which reduces global 

warming. 

CCF, Continuous Cover Forestry: 

With Continuous Cover Forestry, CCF, the forests always 

contain trees. Clear- cuts never take place. CCF forests do 

not only give continuous flows of forest products and 

economic results. CCF forests also continuously and 

sustainably absorb CO2 from the atmosphere, and water from 

extreme rains, reducing global warming and the impacts of 

floods.  

Haight [1] compares CCF and forestry with clear cuts. He 

finds that, in general, constrained management regimes that 

involve clearcutting and planting are suboptimal relative to 

the optimal solution to the more general investment model, 

which may involve selection harvesting and uneven-aged 

management. Lohmander [2] determines economically 

optimal principles of forest management under the influence 

of stochastic prices, random growth, and disturbances, such 

as storms and wind- throws. Lohmander [3], Lohmander [4] 

and Lohmander and Helles [5], give central insights to these 

stochastic adaptive optimization problems and the effects on 

sustainable and economically rational forest management. 

Schütz [6] models the dynamics of deterministic continuous 

cover forestry, CCF, in a mathematically consistent way that 

ties several central decision problems together, including 

harvesting and regeneration. Explicit economic optimization 

of the decisions is however missing. Empirical data from 

beech forests in Eastern Germany are used to estimate some 

of the functions. Pukkala, Lähde and Laiho [7] and Tahvonen, 

Pukkala et al. [8] explicitly and deterministically optimize 

the forest structure and management of CCF forests in 

Finland and Tahvonen and Rämö [9] compare continuous 

cover forestry to forestry with clear-cuts. They report that the 

economically optimal choice of forestry method depends on 

the initial stand state, site productivity, the market rate of 

interest and other factors such as the cost of artificial 

regeneration. Hessenmöller et al. [10] develop a 

deterministic silvicultural strategy for beech forests. The 

articles by Schütz, and Hessenmöller et al. concern the same 

species and the same geographical forest region in Germany. 

The planning approach by Hessenmöller et al., however, is 

based on target diameters, subjectively determined by the 

land owners. From an economic point of view, a fundamental 

problem is that economic optimization is not applied when 

the forestry strategy is developed. Furthermore, the projected 

canopy area of a tree is modeled as a function only of the 

basal area of that tree. This function is applied to determine 

targets for stand based volumes, basal areas, and stem 

densities at “full canopy cover”. However, the canopy area of 

a tree is dynamically affected by spatial competition from 

other trees. This has been empirically investigated in detail, 

and reported in recent articles by Wang et al. [11], and by 
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Hou and Chai [12]. Hence, a tree with a particular basal area, 

may have a small canopy area in a dense forest and a large 

canopy area in a less dense forest. Since the canopy area is 

dynamically affected by forest management decisions, such 

as harvesting, a canopy area function cannot logically be 

considered as independent of competition, and used to 

optimize forest harvests and other management decisions. 

The approach by Schütz, developed for the same 

geographical area and species, does not suffer from these 

methodological canopy problems. For these reasons, the 

author of this paper recommends that the theoretically and 

empirically consistent models by Schütz, updated with 

economic optimization, are applied to manage the beech 

forests of Eastern Germany. 

CCF and a sustainable planet Earth: 

Some of the key problems, with respect to the sustainability 

of planet Earth, concern global warming, forest fires, and 

biodiversity.  

Lohmander [13] derives some fundamental principles of 

optimal forest utilization with consideration of global 

warming: If the average forest harvesting level is 

proportional to the area under active forest management, and 

if the area of active forest management increases, then the 

area covered by forests in dynamic equilibria with net CO2 

absorption close to zero, decreases. Hence, the absorbed 

amount of CO2 per time unit, is an increasing function of the 

sustainable forest harvesting level. To decrease global 

warming, we should increase sustainable harvesting, via an 

increasing area of actively managed CCF forests. 

Lohmander [14] develops a numerical model and derives 

explicit results based on the general findings in Lohmander: 

If the relative weight of the utility of the climate increases, 

and we desire a cooler climate, then the optimal area of 

natural forests that should be transformed to managed 

continuous cover forests increases. If 600 M hectares are 

transformed during 60 years, from 2020 until 2080, then the 

concentration of CO2 in the atmosphere can be reduced by 8 

ppm until the year 2100, compared to the situation without 

forestry expansion. Strong global industrial net emission 

reductions are however also necessary, if we are interested to 

efficiently stop global warming. To reduce the expected 

negative effects of forest fires, several methods can and 

should be combined. Lohmander [15] optimizes 

combinations of adjustments of forestry decisions, affecting 

stock levels, infrastructure, such as road network density, and 

fire management. Often, the most efficient ways to solve a 

problem, include combinations of several methods. The 

global warming problem, for instance, can be solved via 

optimal combinations of emission reductions and 

expansion of sustainable forestry. This is reported by 

Lohmander [16, 17], where also a global CO2 model is 

defined, based on official atmospheric CO2 data series and 

dynamic global emission data. The future consequences of 

alternative global emission reduction levels, and forestry 

expansion strategies, are calculated and presented. Market 

forces may be used to partly control the climate via forestry 

decisions, since forestry decisions are affected by CO2 related 

subsidies. Mohammadi et al. [18] derive the general 

principles of global warming reduction via such forestry-CO2 

subsidies.  

Understanding and predicting CCF growth: 

It is necessary to understand the fundamental principles of 

how trees grow in CCF forests, and how the growth can be 

affected by different kinds of forestry decisions. Without such 

knowledge, continuous and sustainable forestry cannot be 

optimized. It is also necessary to statistically estimate the 

growth function parameters to obtain reliable numerical 

models, that can be used to develop practically relevant 

guidelines.  

Mohammadi et al. [19] analyze the dynamics of multi 

species forests with alternative kinds of simplified growth 

functions. A general dynamic function for the basal area of 

individual trees is derived by Lohmander [20]. This is based 

on a production theoretically motivated autonomous 

differential equation. The growth function is empirically 

estimated, in different countries and with several tree species. 

Mohammadi et al. [21] find that a version of the Lohmander 

model with competition adjustment, explains the basal area 

growth in uneven-aged Caspian mixed species forests better 

than alternative models. Hatami et al. [22] estimate basal area 

growth functions for several tree species in CCF forests in 

Iran, via the Lohmander differential equation with 

competition correction. Fagerberg et al. [23] estimate similar 

Lohmander models for Norway spruce, in Sweden, 

with and without competition adjustment functions. 

Fagerberg et al. [24] compare these models to other kinds of 

models, and discover that the Lohmander model gives more 

reliable predictions than the other tested models. 

Optimization approaches: 

Strategies can be motivated as rational if they lead to the best 

possible decisions and results. The best possible results are 

optimal solutions. Hence, we always need optimization when 

strategies should be developed. 

Applied optimization is the key to operations research. 

Lohmander [25] includes general approaches and 

applications of mathematical modeling in operations research. 

New theoretical extensions are given, with focus on 

stochastic dynamic problems with large numbers of 

dimensions. Stochastic dynamic programming with Markov 

chains, applied to forest sector optimization including CCF, 

is presented in Lohmander and Mohamadi [26].  

Climate changes, market prices, pests, and other stochastic 

disturbances, cannot be perfectly predicted over long 

planning horizons. This has often been forgotten, and/or 

neglected, in forestry planning. It is very important to be able 

to respond optimally to changing and unpredictable future 

events. Such optimization is called Adaptive Optimization, 

AO. Two approaches to optimal adaptive control under large 

dimensionality, are presented in Lohmander [27], and control 

function optimization for stochastic continuous cover forest 

management decisions is described in Lohmander [28]. 

Optimization of CCS: 

Optimal CCF is per definition the best CCF. 

Lohmander [29] shows how optimization of an adaptive 

control function can be used to optimize the economics of 

CCF forestry, under the influence of stochastic prices. The 

adaptive stock control function is optimized via a numerical 

stochastic quasi-gradient method. The optimal spatial 

stochastic dynamic CCF control problem, based on a growth 
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function of the type presented in Schütz, and a stochastic 

control function, according to the principles derived in 

Lohmander, is found in Lohmander [30]. The optimization 

method is also combined with a growth function of the 

Lohmander type and stochastic prices, in Lohmander [31] 

and Lohmander, where a market adaptive control function for 

CCF, that also considers spatially explicit competition 

between trees, is developed. 

Lohmander [32] and Fagerberg [33] demonstrate how the 

forestry decisions in a Swedish case study based on the tree 

species Picea abies, can be optimized, using the Lohmander 

approach in combination with detailed empirical information 

about the initial positions and properties of all individual 

trees. Optimal adaptive rules are defined and determined, that 

show how the harvest decisions are affected by the properties 

of the individual trees and the degrees of competition. 

Optimal decisions are functions of many parameters, some of 

which are very difficult, or practically impossible, to predict 

over long horizons. Future prices of timber of different log 

dimensions and qualities, rates of interest, future qualities of 

logs etc., costs of operations with future machinery, access to 

and wages of future labor, etc. are simply not known today. 

Still, efforts are made to predict things such as future log 

qualities, which is illustrated by Fagerberg et al. [34].  

A tree size distribution can be considered and understood 

as a function of all the processes that affect forests and 

individual trees, such as growth processes of individual trees, 

regeneration of plants, harvesting and competition. In the 

following analysis, these questions will be asked and 

answered. 

Is it possible to start from an empirically estimated 

equilibrium tree size distribution, and to estimate parameters 

of a tree size and competition dependent growth function for 

individual trees? 

1. to estimate the applied harvest strategy? 

2. to explain and reproduce the empirically estimated 

tree size equilibrium distribution? 

The analysis is divided into the following sections: 

a. The empirical facts. 

b. The basal area differential equation and the 

dynamic properties of the solution. 

c. The dynamics of trees in size classes. 

d. Construction of a nonlinear dynamic optimization 

model. 

e. Estimation of the model parameters. 

II. MATERIALS AND METHODS 

A. The Empirical Facts 

Fig. 1 shows an empirical estimation of relative 

frequencies of trees in different diameter classes. The data 

represents CCF forests with the species Picea abies, in 

southern Sweden. The detailed background to the data, 

several statistical analyses and alternative modeling efforts 

based on these data, can be studied in Fagerberg and Olsson, 

et al., and in Fagerberg and Lohmander, et al. The data in Fig. 

1 is assumed to represent an empirically estimated tree size 

distribution in dynamic equilibrium. This data is used to 

estimate parameters of a tree size and competition dependent 

growth function for individual trees, and of the applied 

harvest strategy function. These estimated parameters are 

simultaneously used to derive an approximation of the 

empirically estimated tree size equilibrium distribution. The 

estimated parameters are the results of nonlinear least squares 

minimization of the deviations between the empirically 

observed frequencies and the parameter dependent 

equilibrium frequencies. Hence, a nonlinear full system 

equilibrium analysis of the interdependent processes is 

performed.  

 

 
Fig. 1.  Empirical tree size distribution.

 

The empirically estimated relative frequencies of trees in 

different diameter classes is shown in Fig. 1. Source: The 

empirical data have been obtained from the five graphs 

denoted Fig. 1, in Fagerberg, Olsson, Lohmander et al. The 

data have been organized in 8 diameter classes, and 

transformed to the relative frequency diagram found above. 

Only trees from 10 to 50 cm are considered. The sum of the 

relative frequencies of the 8 diameter classes is 100%. For 

instance: The first class, with trees with diameters between 

10 and 15 cm, is illustrated by the mean diameter 12.5 cm.  

B. The Basal Area Differential Equation and the 

Dynamic Properties of the Solution 

Lohmander gives the theoretical motivation of Eq. (1), a 

differential equation representing the dynamics of the basal 

area of an individual tree, x, without competition. The basal 

area is the approximately circular horizontal area of the stem, 

1.3 meters above the ground level. Eq. (1) is motivated by 

components from biological production theory, 

photosynthesis, light projection areas and size related 

efficiency dependences. The parameters a and b are 

introduced in Eq. (1). 
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2 2 , 0, 0,0
dx a

ax bx a b x
dt b

= −      (1) 

 

Eq. (1) can, via the new parameter c, be reformulated to 

 Eq. (2). 
 

( ) 11 0 , 0,0
dx b

a x cx c x c
dt a
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The derivations based on Eq. (1) in Lohmander, give the 

solution in Eq. (3).  
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Via the definition of k in Eq. (4), it is possible to transform 

Eq. (3) to Eq. (5). 
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Now, we have a more compact version, Eq. (5), of the 

solution to the differential Eq. (2). 
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(5) 

 

From the definition of the differential equation of the basal 

area increment, Eq. (2), we get Eqs. (6) and (7). 
 

      ( )( )1 0 1cx cx−     (6) 

( )( )1 0, 0, 0 1 1cx c x c x−      =  
(7) 

 

Eq. (7) can be used to determine the sign of k. Compare  

Eq. (8). 
 

1
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(8) 

 

In the following analysis, we will need to know more about 

the value of k. In Eq. (9), we simplify the notation, using the 

new variable y. 
 

1
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Clearly, from Eq. (9), we get Eq. (10). 
 

(0) 1k = −  (10) 

 

The first order derivative of k with respect to y is Eq. (11).  

2
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Eqs. (9), (10) and (12) make sure that k is strictly less than 

–1 for all strictly positive and relevant values of x. Compare 

Eq. (13). This is essential information in the following 

derivations. 
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We introduce one more variable, h, in Eq. (14). 
 

0h a c=   
(14) 

 

Now, in Eq. (15), we have a more convenient expression 

of x(t), compared to Eq. (5). Note the following, for strictly 

positive values of t, concerning Eq. (15): The fact that k < -1, 

from Eq. (13), makes sure that the nominator avoids the 

number zero, and always is strictly positive. Furthermore, the 

fact that k < 0, from Eq. (8), makes sure that also the 

denominator avoids the number zero, and always stays 

strictly positive. 
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The basal area of the individual tree is a function the radius, 

r, which is a function of time Eq. (16). 
 

( )
2

( ) ( )x t r t=  (16) 

 

The radius function of time Eq. (17), is obtained via a 

transformation of the basal area function of time Eq. (16). Eqs. 

(8) and (13) guarantee that r(t) > 0 for t > 0. 
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In the following analysis, it is important to know how the 

radius, and the diameter, change over time. The growth of the 

radius is the derivative of the radius with respect to time Eq. 

(18). 
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Eq. (18) can be simplified to Eq. (19). 
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Since we have information about the signs of relevant 

parameters, we can instantly determine that the radius 

increment is strictly positive Eq. (20). 
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Later in this analysis, it is shown how the sign of the 

change of the radius increment over time, influences the 

properties of the equilibrium diameter frequency distribution. 

For this reason, we investigate the second order derivative of 

the radius increment with respect to time Eq. (21). 
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Eq. (21) gives Eqs. (22) and (23). 
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Continued transformations give Eq. (24)−(26). 
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Since we already know the signs of several parameters, 

found in Eq. (27), we can show that the radius increment of a 

tree without competition, is a strictly decreasing function of 

time. Observe in Eq. (27), that it is necessary to know, from 

Eq. (13), that k < –1. 
 

( )
2

2
1 0 0 0

d r
k h t

dt
 −        (27) 

 

Thus, Eq. (27), is a general theoretical result, based on the 

differential Eq. (1), which has been rigorously tested and 

estimated for several species in different countries. Note that 

Schütz [31] makes a different growth function assumption, 

which implies that the radius and diameter increments, 

without competition, are strictly increasing functions of time 

(and diameter). 

C. The Dynamics of Trees in Size Classes 

1) Forests without harvests and lethal competition 

Consider a forest with trees in different size classes, i. The 

size, for instance “diameter” 1.3 meters above ground, of a 

tree, is a strictly increasing function of the size class index, i. 

Let ni denote the number of trees in size class i. gi is the share 

of the trees in size class i that grow to the next size class, i+1, 

per time unit. In this subsection, we assume that the tree 

mortality and the harvest levels are zero. Eq. (28) gives the 

time derivative, in Newtonian notation, of the number of trees 

in size class i. Clearly, new trees grow to size class i, from 

the lower size class, i-1, and some trees leave size class i, and 

grow to the higher size class, i+1. 
 

1 1i i i i in n g n g− −= −  (28) 

 

Eq. (29) shows the links between three different size 

classes. Note that Eq. (29) does not include all size classes, 

just three such classes. Lower and higher size classes may 

also exist. Furthermore, size classes can be defined in 

different ways, for instance representing 1 cm diameter 

classes, 5 cm classes or classes of some other size. 
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(29) 

 

Now, we consider a forest where the numbers of trees in 

different size classes do not change over time. This means 

that the tree size frequency distribution is in dynamic 

equilibrium. This is illustrated in Eq. (30). 
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Eq. (30) implies Eq. (31). 
 

1 1 0i i i in g n g+ +− =  (31) 

 

The number of trees that enter a size class is equal to the 

number of trees that leave the same size class Eq. (32). 
 

1 1i i i in g n g+ +=  (32) 

 

Eq. (33) follows from Eq. (32) and means that the number 

of trees per size class is a strictly decreasing function of the 

size class index, in case the share of trees that grow to the 

next size class per time unit is a strictly increasing function 

of the size class index.   
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2) Empirical observation 

The number of trees per diameter class is a strictly 

decreasing function of the diameter, except for in one case, 

which is assumed to be a random deviation from the principle. 

Compare Fig. 1. 

3) Mathematical observation 

The number of trees per diameter class is a strictly 

decreasing function of the diameter in case the diameter 

increment is a strictly increasing function of the diameter. 

Furthermore, since the diameter is a strictly increasing 

function of time: The number of trees per diameter class is a 

strictly decreasing function of the diameter in case the 

diameter increment is a strictly increasing function of the age 

of the tree (which is an increasing function of time). The 

general mathematical growth function with very strong 

empirical support, has however shown that the diameter 

increment of trees without competition is a strictly decreasing 

function of time. Compare Eq. (27). 

4) General observation 

Consider a forest, during a period without harvesting and 

mortality. Then, if the number of trees per diameter class is a 

strictly decreasing function of the diameter, then the diameter 

increment is a strictly increasing function of the diameter of 

the tree (which is an increasing function of the age of the tree, 

and time). This means that competition between trees affects 

the growth in a way such that the diameter growth of small 

trees is strictly more reduced than the diameter growth of 

large trees. This will also be demonstrated in the next steps 

of analysis in this paper. 

5) Forests with harvests and competition 

Now, we also consider harvesting and competition 

between trees. Gi is the share of the trees in size class i that 

grow to the next size class, i+1, per time unit, under the 

influence of competition from other trees. Observe that the 

diameter interval of a diameter class, and the length of a time 

unit, have not been specified in this general section. Hence, 

tree size frequency distributions do not reveal the absolute 

levels of forest production per year. 

Eq. (34) shows the time derivative of the number of trees 

in size class i, as a function of the number of trees in the lower 

size class, ni-1, the shares of the trees in the two size classes, 

that grow to the next size classes, Gi-1 and Gi, and ui, the share 

of the trees in size class i that are harvested before they reach 

the next size class.  
 

( )1 1i i i i i in n G n G u− −= − +  (34) 

 

In dynamic equilibrium, the numbers of trees in the 

different size classes do not change over time. Eqs. (35) and 

(36) are satisfied.   
 

( )1 1 0i i i i i in n G n G u− −= − + =  (35) 

 

( )1 1 1i i i i in G u n G+ + ++ =  (36) 

 

From Eq. (36), we get Eq. (37).  

1

1 1

i i

i i i

n G

n G u

+

+ +

=
+

 
 

(37) 

 

6) Observation: 

We already know from Eq. (27) that, without competition, 

the diameter increment is a strictly decreasing function of 

time, and indirectly, of the diameter class. Hence, gi  > gi+1 . 

However, if competition from other trees in the forest reduces 

the diameter increments of small trees more than it reduces 

the diameter increments of large trees, it is possible that Gi  < 

Gi+1 , even if gi  > gi+1 . Eq. (37) means that it is quite possible 

that the relative frequency of trees is a strictly decreasing 

function of the diameter class index i, as we see in Fig. 1, 

even if the trees in a size class are small and no trees are 

harvested, which means that ui+1 = 0. Eq. (37) also shows that 

the relative frequency of trees is a more rapidly decreasing 

function of the size class index i, if the share of trees that are 

harvested, ui+1, increases.  

D. Construction of a Nonlinear Dynamic Optimization 

Model 

A numerical model is constructed. This is based on the 

discoveries and observations presented in the earlier sections. 

The complete numerical model is included in the Appendix. 

In this section, the key equations and variables are motivated 

and presented in detail. Size classes are defined as diameter 

classes, consistent with the classes of the empirical data 

presented in Fig. 1. Eq. (38) corresponds to Eq. (35). Eq. (38) 

also specifies the values of the diameter class indices, i, that 

are relevant in the optimization model. Furthermore,   is 

introduced as an optimized parameter (variable, during the 

optimization), that is multiplied by the diameter class 

dependent harvest trend parameters wi, defined in Eq. (40), to 

give the harvest shares ui. 
 

( )  1 1 0 , 2,...,8 ,i i i i i i iG n G u n i u w− − − + =  =  (38) 

 

As illustrated and derived in Lohmander and Fagerberg, 

the probability that it is optimal to harvest a particular tree, is 

an increasing function of the diameter of that tree, if the 

diameter is sufficiently large, and zero for smaller trees. 

Hence, one hypothesis is that the optimized value of   is 

strictly positive. wi is a strictly increasing function of the 

diameter class, for large diameters, and zero for smaller 

diameters. In the numerical model, the notation is partly 

different. Eq. (38) corresponds to Eq. (39) in the numerical 

model. 
 

@FOR( size(i)| i#GT#1 #AND# i#LE#8 :  

Grow(i-1)∙N(i-1) – 

(Grow(i)+Hpar∙Harv(i))∙N(i) = 0 ) 

(39) 
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 (40) 

 

Eq. (40) corresponds to Eq. (41) in the numerical model. 
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@FOR( size(i)| i#LE#4: Harv(i) = 0 ); 

@FOR( size(i)| i#GT#4 #AND# i#LE#8: Harv(i) = 

(i-4)/4 ); 

Harv(9) = 1; 

(41) 

 

Eq. (42) specifies Gi as a function of the diameter, 2ri, and 

the basal area per hectare of larger trees, i . Eq. (42) 

introduces three parameters (treated as variables, during the 

optimization), that are optimized, namely  ,  and  .  
 

( )( )  1 11 2 ,... , ,..., , 1,..., 1i i i i I i IG r n n r r i I


   + += + +  −  (42) 
 

Eq. (42) corresponds to Eq. (43) in the numerical model. 
 

@FOR( size(i)| i#LT#9: Grow(i) = 1.0 + 

Dpar*Dia(i)+ Gpar*(BA_Larger(i))^BAL_exp) 
(43) 

 

The estimated parameters determine several functions, that 

together determine the relative equilibrium frequencies of 

trees in different size classes. To determine the numbers of 

trees in different size classes per hectare, the basal area per 

size class and hectare, and the basal area of larger trees per 

hectare and size class, it is also necessary to utilize estimates 

of the total basal area per hectare. This is done in the 

numerical model in the Appendix.  

To transform the relative size frequency results derived in 

the numerical model to empirically relevant absolute values, 

the empirically estimated average total basal area per hectare, 

32.4 m2 per hectare, is used. This parameter value is 

calculated from data found in Fagerberg, Olsson, Lohmander, 

et al. In the numerical Appendix, this is denoted BA_TOT. 

E. Estimation of the Model Parameters 

A nonlinear full system equilibrium analysis of all 

interdependent processes is performed. When the numerical 

model in the Appendix is executed, the problem is solved, 

and all parameters are determined by the algorithm. The 

numerical data observations, illustrated in Fig. 1, 

representing the empirically estimated equilibrium tree size 

distribution, are included in the nonlinear numerical 

optimization model. These observations are used to estimate 

the parameters,  ,  ,  and  . These parameter values 

include the information that we need, about the tree size and 

competition dependent growth function for individual trees, 

and of the applied harvest strategy function. The estimated 

parameters are simultaneously used to derive an 

approximation of the empirically estimated tree size 

equilibrium distribution. The estimated parameters are the 

results of nonlinear least squares minimization of the 

deviations between the empirically observed frequencies and 

the parameter dependent equilibrium frequencies.  

III. RESULTS 

The nonlinear dynamic optimization model, introduced in 

the earlier section and included in the Appendix, minimizes 

the sum of squares of the residuals. The residuals are the 

relative frequency prediction errors. Table 1 includes key 

statistics. The residual sum of squares, is approximately 6. 

This is much smaller than the total sum of squares. The total 

sum of squares is the sum of the squared deviations of the 

empirical relative frequencies from the average relative 

frequencies. That sum exceeds 241. The R2 value, exceeding 

0.976, indicates that the model predicts the relative 

equilibrium frequencies very well.  
 

Table 1. Derived general statistical results (Detailed 

descriptions are found in the Appendix) 
Variable Notation Estimate 

Total sum of squares SSTOT 241.216 

Residual sum of squares SSRES 5.599311 

Multiple regression 

coefficient 

R2 0.9767872 

Variance of the residuals VAR_RES 0.7999016 

Standard deviation of the 

residuals 

STDEV_RES 0.8943722 

The standard deviation of the residuals is lower than 0.9 

percent units, according to Table 1. This is consistent with 

the illustration in Fig. 2, where all, except for two, of the 

absolute relative frequency errors are very close to zero. Only 

in two cases, the absolute relative frequency errors exceed 1 

percent unit.   

 
Fig. 2. Predicted and empirical tree size distributions. 

 

Fig. 2 shows the predicted and empirical relative 

frequencies of trees in different diameter classes, The 

predicted data, are determined by the optimization model in 

the Appendix.  

The optimized parameter values are presented in Table 2. 

The numerical notation is applied in the optimization code in 

the Appendix.  

We observe that the diameter dependent harvest trend, 

defined via Eqs. (38) and (40), is reasonable, since the 

optimal value of   in Table 2 is estimated to be strictly 

positive.  

Table 2. Optimized parameter estimates 
Analytical 

notation 

Numerical 

notation 
Estimate Parameter reference: 

  H P A R 0.2468048 Equation (38) & Appendix 

  DPAR −0.0177103 Equation (42) & Appendix 

  GPAR −6.17579E-07 Equation (42) & Appendix 

  BAL_EXP 4 Equation (42) & Appendix 

  LPAR 0.2275699 Appendix 
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Thanks to the combination of the estimated parameter 

value  , and the diameter class dependent harvest trend, 

defined in Eq. (40), it is possible to derive the diameter 

dependent relative harvest function, found in Fig. 3. As 

explained and derived in Lohmander and Fagerberg, the 

probability that it is optimal to harvest a particular tree, is an 

increasing function of the diameter of that tree, if the diameter 

is sufficiently large, and zero for smaller trees. This is 

consistent with the optimized results illustrated in Fig. 3. 
 

 
Fig. 3. The relative harvest function. 

 

Fig. 3. shows the relative harvest, 
i

i i

u

G u+
, determined by 

the optimization model.   

As seen in Eq. (27), the radius increment of a tree without 

competition, is a strictly decreasing function of time. This is 

consistent with the derived result. In Table 2, the optimal 

value of   is really found to be strictly negative. Note that 

Schütz [31] makes a different growth function assumption. 

With the Schütz assumption, the radius and diameter 

increments, without competition, are strictly increasing 

functions of time (and diameter).  

The predicted relative frequencies of trees in different 

diameter classes, shown in Fig. 2, combined with the total 

basal area per hectare, can be used to derive the basal area of 

trees in different diameter classes, illustrated in Fig. 4. In  

Fig. 2, we see that the relative frequency of small diameter 

trees is much larger than the relative frequency of large 

diameter trees. Still, since the basal area per tree is very much 

larger for large diameter trees than for small diameter trees, 

the basal area of the trees in a diameter class, in Fig. 4, is 

much higher for diameter class 37.5 cm than for diameter 

class 12.5 cm.  
 

 
Fig. 4. Basal area distribution. 

Fig. 4 shows the basal areas of trees in different diameter 

classes, m2 per hectare, determined by the optimization 

model. The classes as represented by the mean diameters of 

the corresponding 5 cm diameter classes.  

The share of trees that grow to the next diameter class, 

proportional to the diameter increment, was defined in  

Eq. (42). In Eq. (44), the estimated optimal parameter values 

from Table 2. have been attached to this function. Clearly, if 

the competition from larger trees would not affect the growth, 

 would be zero, and the diameter increment would be a 

strictly decreasing function of the diameter. However, as we 

see in Eq. (44),  is strictly negative, which means that the 

diameter increment is strictly negatively affected by 

competition from larger trees.  obtained the value 4, which 

is higher than the value 3, reported by Schütz. It is likely that 

the free optimal value of  exceeds 4. In the optimization 

model, a constraint makes sure that is below or equal to 4, 

since numerical instability sometimes is observed for higher 

values of  . The complete model is found in the Appendix. 

The reader is encouraged to investigate alternative 

specifications in the future. 
 

( )( )1 1

7

1 2 ,... , ,...,

0.0177103, 6.17579 10 , 4

i i i i I i IG r n n r r


  

  

+ +

−

= + +

= − = −  =

 (44) 

 

The basal area of larger trees is derived and found in  

Fig. 5. Note that this is a strictly decreasing function of the 

diameter class. Since this value is raised to the exponent  = 

4, and multiplied by a strictly negative parameter,  ,  and 

included in the diameter growth function, Eq. (44), it is clear 

that trees with small diameters, are much more negatively 

affected by competition from larger trees, than large diameter 

trees. 

Hence, in continuous cover forests, small trees have small 

year rings, and stay in the small diameter classes for a long 

time. This is good for the future quality of the timber, which 

benefits from small year rings in the center of the logs.  

In forests with clear cuts, however, small trees have very 

limited competition from larger trees. For this reason, they 

develop large year rings. Mostly, this leads to low quality 

future timber logs, and low economic values of the timber.  
 

 
Fig. 5. Basal areas of larger trees. 

 

Basal areas of larger trees, m2 per hectare, determined by 

the optimization model, are shown in Fig. 5.  

The equilibrium number of stems per hectare, in different 

diameter classes, is found in Fig. 6. This function is the result 

of all the parameters estimated via the nonlinear 
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regression/optimization model and the empirically estimated 

basal area per hectare. In Table 2, we also find the estimate 

of the parameter  . This is a scaling parameter, used to 

adjust the relative frequencies of trees in different diameter 

classes in the algorithm.   
 

 
Fig. 6. Equilibrium diameter distribution.  

 

The equilibrium number of stems per hectare, in different 

diameter classes, determined by the optimization model, are 

shown in Fig. 6.  

IV. DISCUSSION 

Science and intensified research can hopefully make us 

better understand the facts and processes of relevance to the 

present and future of our world. Furthermore, with improved 

understanding, we may control the development of our planet 

in a sustainable way, with consideration of a relevant 

objective function.  

Rational control of the forests can strongly improve several 

things of importance to humans and most other animals and 

plants. Several attempts to optimize forestry with 

consideration of global warming, production economic 

results, forest fires etc. have been reported and discussed in 

the introduction. Forests are also essential to many other 

dimensions of life, including biodiversity and recreation. 

In this paper, we have seen that it is possible to gain 

fundamental understanding of rather complicated processes, 

governing the dynamics of the forests, also via data that 

sometimes can be gathered via simple methods. Sometimes, 

it is even sufficient to collect empirical tree size frequency 

data, to derive properties of growth functions, harvesting 

strategies, and competition mechanisms.  

Let us in the future continue the processes that lead to 

better understanding and more optimal management of our 

forests. In the process, we can improve not only the global 

climate, the economic results, and the biodiversity, but also 

expand international cooperation and avoid wars.  

V. CONCLUSIONS 

A tree size distribution can be considered and understood 

as a function of all the processes that affect forests and 

individual trees, such as growth processes of individual trees, 

regeneration of plants, harvesting and competition.  

In dynamic equilibrium, the tree size frequency 

distribution is stationary. The tree size frequency distribution 

is a function of the growth function, competition, and the 

harvest strategy. In this study, we have assumed that tree 

mortality is avoided via the harvest strategy decisions.  

Nonlinear optimization and empirical tree size frequency 

data have been used to simultaneously estimate tree size 

frequency relevant parameters of a diameter growth function 

with competition dependence, and the harvest strategy. The 

properties of the estimated growth function are consistent 

with the theoretically defined function. The properties of the 

estimated harvest strategy confirm the hypotheses. The R2 of 

the nonlinear regression exceeds 0.97. 

With access to an empirically estimated equilibrium tree 

size distribution, it is possible to:  

i. Estimate parameters of tree size and competition 

dependent growth functions for individual trees. 

ii. Estimate the applied harvest strategy. 

iii. Explain and reproduce the empirically estimated 

tree size equilibrium distribution. 

APPENDIX 

A1. Software, coded in the computer language Lingo. 

(Language source: Lindo.com.) 
 

! Tree size distribution.; 

!Peter Lohmander 231127_2102; 

!OK Version for BA_tot = 32.4; 
 

SETS:  

 size/1..9/: Dia, f_emp, N, Grow, Harv, f_pred, Harv_share, 

BA_tree, BA_rel, BA_share, BA_class_ha, BA_Larger, 

Num_ha; 

 obs/1..8/:Resid; 

endsets 
 

Data: 

f_emp = 22.73331 

        18.09595 

        12.66192 

        14.29256 

        10.86634 

         9.639252 

         7.03548 

         4.675197 

         0.; 

 

enddata 

BA_tot = 32.4; 

PI = 3.141592654; 

f_mean = @sum(obs(i): f_emp(i))/8; 

SStot = @sum(obs(i):(f_emp(i) - f_mean)^2); 

SSres = Obj; 

R2 = 1 - SSres/SStot; 

Var_f_emp = SStot/(8-1); 

Stdev_f_emp = (Var_f_emp)^.5; 

Var_res = SSres/(8-1); 

Stdev_res = (Var_res)^.5; 

@for(obs(i): @free(Resid(i)));  

@for(size(i): f_pred(i) = Lpar*N(i));  

@for(obs(i): Resid(i) = f_emp(i) - f_pred(i)); 

Obj = @sum(obs(i):(f_emp(i)-f_pred(i))^2); 

min = Obj; 

Lpar < 1; 

Lpar > 0; 

Hpar > 0.1; 

Hpar < 1; 

Dpar < 0; 

Bal_exp > 2; 

Bal_exp < 4; 

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

E
q
u

il
ib

ri
u
m

 n
u

m
b

er
 o

f 

st
em

s 
p

er
 h

ec
ta

re

Diameter class (cm)

International Journal of Sustainability in Energy and Environment, Vol. 1, No. 1, 2024

73



 
 

@free(Gpar); 

@free(Hpar); 

@free (Dpar); 

N(1) = 100; 

N(9) = 0; 

@FOR( size(i):Dia(i) = 7.5 + 5*i); 

@for(size(i): BA_tree(i) = PI*(Dia(i)/2)^2); 

@for(size(i): BA_rel(i) = BA_tree(i)*f_pred(i)/100); 

Sum_BA_rel = @sum(size(i): BA_rel(i)); 

@for(size(i): BA_share(i) = BA_rel(i)/Sum_BA_rel); 

@for(size(i): BA_class_ha(i) = BA_share(i)*BA_tot); 

@for(size(i): Num_ha(i) = 

10000*BA_class_ha(i)/Ba_tree(i)); 

 

@for(size(i)| i#LT#9: BA_Larger(i) = @sum(size(j)| i#LT#j: 

BA_class_ha(j))); 

Grow(9) = 0; 

@FOR( size(i)| i#LT#9: Grow(i) = 1.0 + Dpar*Dia(i)+ 

Gpar*(BA_Larger(i))^BAL_exp); 

Grow(9) = 0; 

@FOR( size(i)| i#LE#4: Harv(i) = 0 ); 

@FOR( size(i)| i#GT#4 #AND# i#LE#8: Harv(i) = (i-4)/4 ); 

@FOR( size(i)| i#GT#1 #AND# i#LE#8 : Grow(i-1)*N(i-1) 

- (Grow(i)+Hpar*Harv(i))*N(i) = 0 ) ; 

Sum_f_emp = @sum(size(i):f_emp(i)); 

@FOR( size(i)| i#GT#1 #AND# i#LE#8: Harv_share(i) = 

Hpar*Harv(i)/(Grow(i)+Hpar*Harv(i)) ); 

Harv_share(1) = 0; 

Harv_share(9) = 1; 

end 

 

A2. Output from the computer code. 

  Local optimal solution found. 

  Objective value:                              5.599311 

  Infeasibilities:                             0.4263256E-13 

  Total solver iterations:                           148 
 

                       Variable           Value        Reduced Cost 

                         BA_TOT        32.40000            0.000000 

                             PI        3.141593            0.000000 

                         F_MEAN        12.50000            0.000000 

                          SSTOT        241.2160            0.000000 

                          SSRES        5.599311            0.000000 

                            OBJ        5.599311            0.000000 

                             R2       0.9767872            0.000000 

                      VAR_F_EMP        34.45943            0.000000 

                    STDEV_F_EMP        5.870216            0.000000 

                        VAR_RES       0.7999016            0.000000 

                      STDEV_RES       0.8943722            0.000000 

                           LPAR       0.2275699           0.2642940E-07 

                           HPAR       0.2468048            0.000000 

                           DPAR      -0.1771030E-01        0.000000 

                        BAL_EXP        4.000000            0.000000 

                           GPAR      -0.6175791E-06        0.000000 

                     SUM_BA_REL        582.2019            0.000000 

                      SUM_F_EMP        100.0000            0.000000 

                        DIA( 1)        12.50000            0.000000 

                        DIA( 2)        17.50000            0.000000 

                        DIA( 3)        22.50000            0.000000 

                        DIA( 4)        27.50000            0.000000 

                        DIA( 5)        32.50000            0.000000 

                        DIA( 6)        37.50000            0.000000 

                        DIA( 7)        42.50000            0.000000 

                        DIA( 8)        47.50000            0.000000 

                        DIA( 9)        52.50000            0.000000 

                      F_EMP( 1)        22.73331            0.000000 

                      F_EMP( 2)        18.09595            0.000000 

                      F_EMP( 3)        12.66192            0.000000 

                      F_EMP( 4)        14.29256            0.000000 

                      F_EMP( 5)        10.86634            0.000000 

                      F_EMP( 6)        9.639252            0.000000 

                      F_EMP( 7)        7.035480            0.000000 

                      F_EMP( 8)        4.675197            0.000000 

                      F_EMP( 9)        0.000000            0.000000 

                          N( 1)        100.0000            0.000000 

                          N( 2)        77.46213            0.000000 

                          N( 3)        63.07114            0.000000 

                          N( 4)        56.16304            0.000000 

                          N( 5)        49.17323            0.000000 

                          N( 6)        41.77401            0.000000 

                          N( 7)        31.84781            0.000000 

                          N( 8)        19.40323            0.000000 

                          N( 9)        0.000000            0.000000 

                       GROW( 1)       0.2195348            0.000000 

                       GROW( 2)       0.2834092            0.000000 

                       GROW( 3)       0.3480749            0.000000 

                       GROW( 4)       0.3908884            0.000000 

                       GROW( 5)       0.3847507            0.000000 

                       GROW( 6)       0.3294971            0.000000 

                       GROW( 7)       0.2470900            0.000000 

                       GROW( 8)       0.1587605          -0.2863626E-08 

                       GROW( 9)        0.000000            0.000000 

                       HARV( 1)        0.000000            0.000000 

                       HARV( 2)        0.000000            0.000000 

                       HARV( 3)        0.000000            0.000000 

                       HARV( 4)        0.000000            0.000000 

                       HARV( 5)       0.2500000            0.000000 

                       HARV( 6)       0.5000000            0.000000 

                       HARV( 7)       0.7500000            0.000000 

                       HARV( 8)        1.000000            0.000000 

                       HARV( 9)        0.000000            0.000000 

                     F_PRED( 1)        22.75699            0.000000 

                     F_PRED( 2)        17.62805            0.000000 

                     F_PRED( 3)        14.35309            0.000000 

                     F_PRED( 4)        12.78102            0.000000 

                     F_PRED( 5)        11.19035           0.7288280E-08 

                     F_PRED( 6)        9.506508            0.000000 

                     F_PRED( 7)        7.247602            0.000000 

                     F_PRED( 8)        4.415590            0.000000 

                     F_PRED( 9)        0.000000            0.000000 

                 HARV_SHARE( 1)        0.000000            0.000000 

                 HARV_SHARE( 2)        0.000000            0.000000 

                 HARV_SHARE( 3)        0.000000            0.000000 

                 HARV_SHARE( 4)        0.000000            0.000000 

                 HARV_SHARE( 5)       0.1382035            0.000000 

                 HARV_SHARE( 6)       0.2724719            0.000000 

                 HARV_SHARE( 7)       0.4282886            0.000000 

                 HARV_SHARE( 8)       0.6085451            0.000000 

                 HARV_SHARE( 9)        1.000000            0.000000 

                    BA_TREE( 1)        122.7185            0.000000 

                    BA_TREE( 2)        240.5282            0.000000 

                    BA_TREE( 3)        397.6078            0.000000 

                    BA_TREE( 4)        593.9574            0.000000 

                    BA_TREE( 5)        829.5768            0.000000 

                    BA_TREE( 6)        1104.466            0.000000 

                    BA_TREE( 7)        1418.625            0.000000 

                    BA_TREE( 8)        1772.055            0.000000 

                    BA_TREE( 9)        2164.754            0.000000 

                     BA_REL( 1)        27.92703            0.000000 

                     BA_REL( 2)        42.40042            0.000000 

                     BA_REL( 3)        57.06901            0.000000 

                     BA_REL( 4)        75.91379            0.000000 

                     BA_REL( 5)        92.83251            0.000000 

                     BA_REL( 6)        104.9962            0.000000 

                     BA_REL( 7)        102.8163            0.000000 

                     BA_REL( 8)        78.24666            0.000000 

                     BA_REL( 9)        0.000000            0.000000 

                   BA_SHARE( 1)       0.4796794E-01        0.000000 

                   BA_SHARE( 2)       0.7282770E-01        0.000000 

                   BA_SHARE( 3)       0.9802272E-01        0.000000 

                   BA_SHARE( 4)       0.1303908            0.000000 

                   BA_SHARE( 5)       0.1594507            0.000000 

                   BA_SHARE( 6)       0.1803432            0.000000 

                   BA_SHARE( 7)       0.1765991            0.000000 

                   BA_SHARE( 8)       0.1343978            0.000000 

                   BA_SHARE( 9)        0.000000            0.000000 

                BA_CLASS_HA( 1)        1.554161            0.000000 

                BA_CLASS_HA( 2)        2.359617            0.000000 

                BA_CLASS_HA( 3)        3.175936            0.000000 

                BA_CLASS_HA( 4)        4.224663            0.000000 

                BA_CLASS_HA( 5)        5.166203            0.000000 
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                BA_CLASS_HA( 6)        5.843120            0.000000 

                BA_CLASS_HA( 7)        5.721810            0.000000 

                BA_CLASS_HA( 8)        4.354489           0.8003898E-08 

                BA_CLASS_HA( 9)        0.000000            0.000000 

                  BA_LARGER( 1)        30.84584            0.000000 

                  BA_LARGER( 2)        28.48622            0.000000 

                  BA_LARGER( 3)        25.31029            0.000000 

                  BA_LARGER( 4)        21.08562            0.000000 

                  BA_LARGER( 5)        15.91942            0.000000 

                  BA_LARGER( 6)        10.07630            0.000000 

                  BA_LARGER( 7)        4.354489            0.000000 

                  BA_LARGER( 8)        0.000000            0.000000 

                  BA_LARGER( 9)        0.000000            0.000000 

                     NUM_HA( 1)        126.6445            0.000000 

                     NUM_HA( 2)        98.10149            0.000000 

                     NUM_HA( 3)        79.87610            0.000000 

                     NUM_HA( 4)        71.12737            0.000000 

                     NUM_HA( 5)        62.27517            0.000000 

                     NUM_HA( 6)        52.90447            0.000000 

                     NUM_HA( 7)        40.33348            0.000000 

                     NUM_HA( 8)        24.57311            0.000000 

                     NUM_HA( 9)        0.000000            0.000000 

                      RESID( 1)      -0.2367899E-01        0.000000 

                      RESID( 2)       0.4679020            0.000000 

                      RESID( 3)       -1.691172            0.000000 

                      RESID( 4)        1.511544            0.000000 

                      RESID( 5)      -0.3240060            0.000000 

                      RESID( 6)       0.1327442            0.000000 

                      RESID( 7)      -0.2121220            0.000000 

                      RESID( 8)       0.2596071            0.000000 
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